
International Journal of Computer Trends and Technology Volume 72 Issue 12, 164-170, December 2024

ISSN: 2231–2803 / https://doi.org/10.14445/22312803/IJCTT-V72I12P120 © 2024 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Hiding Expletive Comments in Mobile Applications using

CNN and LSTM based NLP Classification Models

Shivam Tomar

Independent Scholar, California, USA.

Corresponding Author : tomar.shivam@gmail.com

Received: 06 November 2024 Revised: 30 November 2024 Accepted: 19 December 2024 Published: 31 December 2024

Abstract - Often, e-commerce mobile applications show the public comments of consumers about the products they sell.

Sometimes, these comments contain foul language, which is inappropriate to be shown on the public platform. App developers

would want to hide them and show them only after the consent from the app user. The goal of this study is to find the optimal

way to classify comments as expletive or not using the NLP classification model. This study utilized CNN and LSTM algorithms

to train the expletive language classification model. These models are used by the mobile application to find whether comments

from users are expletive in nature or not. If a comment is found to be expletive, it will be hidden. The mobile app will also

provide an option to unhide the expletive comments if the user wants to see them. LSTM models are found to be more accurate

than CNN models with large datasets. Hiding expletive comments is very important for organizations to meet the guidelines of

various countries. Deep learning provides an accurate and novel approach to achieve this feature.

Keywords - CNNs, Deep Learning, LSTM, NLP, Mobile Applications, Android.

1. Introduction
E-commerce mobile applications usually have a feature

to let their customers add feedback for the products they

purchase. These feedback comments are shown on the mobile

application to all the users. Sometimes, these comments

contain foul language and are inappropriate to be shown on

public platforms. These comments should be hidden by

default and made visible only if the app users consent to it.

Major mobile platforms like Android and iOS SDKs lack

any API to classify comments text as expletive or non-

expletive. There is also a lack of reliable Web APIs that mobile

apps can use to detect expletive comments. The goal of this

research is to train DL base NLP classification models for

expletive language detection using various approaches and

compare their performance to find the best model training

algorithm for this use case.

Deep learning-based NLP is an excellent way to classify

comments as expletive or non-expletive, and mobile apps can

leverage these models to hide the expletive comments, only to

be shown upon consent from users.

This paper used the CADD dataset to train two models

with CNN and LSTM algorithms, respectively and then found

the accuracy of these algorithms by using AOC matrices to

find the best-performing algorithm. The best-performing

algorithm is deployed on an AWS EC2 instance to be used by

the mobile apps.

2. Literature Review
Detecting expletive language is crucial for fostering a safe

digital environment in mobile apps. After the detection of such

language, mobile apps can hide it to protect users from being

exposed to it, and machine learning-based techniques have

proven to play a crucial role in detecting expletive language.

Existing research on expletive language detection is shared

here, along with the techniques involved and existing

shortcomings.

2.1. Keyword based Techniques

Traditional ways for expletive language detection involve

known keywords and/or regular expressions.

Keyword/Regular expression-based technique has the

following shortcomings:

- Missing the context of a sentence

- Variation in spelling of keywords

- Known expletive keywords missing in the sentence

2.2. Machine Learning based Approach

This approach includes using ML algorithms like Naïve

Bayes, SVM, etc., for expletive language classification. This

approach works quite well on small datasets but struggles with

complex context. This approach is also not suitable for

multilingual data.

2.3. Deep Learning based Approach

It includes DL algorithms like CNN, RNN, LSTM and

transformers. DL-based text classification techniques are

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Shivam Tomar / IJCTT, 72(12), 164-170, 2024

165

proven to be very accurate, including in expletive language

detection. These techniques are quite good at remembering the

context of words used in a sentence. This study aims to find

and compare the performance of LSTM and CNN DL

algorithms in expletive language detection.

3. DL Model Training Algorithms for Expletive

Language Detection
3.1. Dataset Used for Training

 The dataset used for training the DL model is CADD

(Comprehensive Abuse Detection Dataset), which contains

the abusive comments collected from English Redditt posts

with multifaceted labels and context.

3.2. Preprocessing of Data

 The training data is pre-processed by following

techniques prior to training the model:

- Lowercase training data: For this study, training data was

lowercase to reduce data complexity and improve

computational efficiency. Lowercasing reduces data

complexity by normalizing the input data and improving

generalization. For example, The words “cat” and “Cat”

will be considered the same, and the model will focus on

the meaning of words rather than cases. This also reduces

the vocabulary size, hence less embedding generation,

which improves computation efficiency and reduces

training time.

- Tokenization: This step includes breaking down the

training data texts into smaller units called tokens. Tokens

can be words or sub-words. The text is split based on

white space. This study has used “words_tokenize” from

the “nltk.tokenize” python library. Tokenization

transforms unstructured text into manageable tokens that

are essential for training NLP models.

- Stop words removal: It is an essential step to improve the

vocabulary size, which in turn improves computation

efficiency. Stop words are the words that add little to no

value to the semantics of text. Examples of stop words

are: “is”, “an”, “in”, etc.

- Collating bi grams: This study collates the bigrams in the

training data corpus before performing model training.

For example, Tokens “New” and “York” are collated to

“New_York”.

- Stemming: This study has used stemming to clean the

data further and improve computational efficiency.

Stemming is a technique to algorithmically reduce words

to their base form by removing prefixes and suffixes

while maintaining the core meaning of the word.

Stemming might end up changing the word to another

word, which is invalid in that language. For ex, running

is stemmed to run.

3.3. CNNs Model Details

 Convolutional Neural Networks, or CNNs, are based on

the concept of sliding(convolving) a small window over the

data sample. This study uses triplets of words in the training

data for the expletive language classification model.

3.3.1. CNN Model Hyperparameters

The following hyperparameters are used for the training

of the CNN model:

Table 1. CNN models hyperparameters

Hyperparameter Value Description

epochs 4

Number of passes of

training dataset

through model during

training

batch size 128

The size of the training

sample that models the

process in one forward

and backward pass

during training

Vector space

embedding
64

Size of the word vector

space embedding

Unique Words 5000

Count of most

significant words used

from the training data

corpus

Max review

length
400

Max length of the

comments

Embedding

dropout
0.2

Dropping 20% of

embedding at any

given round of training

to generalize on new

training data

CNN filters 256
Count of filters on

Convolutional layers.

Kernel length 3

Size of each filter is 3

tokens to find the

triplets of words

relevant for expletive

comment detection.

Dense layer size 256

Every dense hidden

layer will have 256

neurons

Dropout 0.2

Dropping 20% of

neurons from dense

layer to generalize on

unseen data

3.3.2. CNN Model Architecture

 In this case, the CNN model will have the following

layers: (Embedding, SpatialDropout1D), (Conv1D,

GlobalMaxPooling1D), (Dense layer, Dropout), (Dense,

Sigmoid for output) [1].

https://github.com/nlpcl-lab/CADD_dataset
https://github.com/nlpcl-lab/CADD_dataset

Shivam Tomar / IJCTT, 72(12), 164-170, 2024

166

The first layer in the CNN is an embedding layer with a

20% dropout in each training. This layer will create a word

embedding vector of length 64. The next layer is one

dimensional CNN layer. Here, 256 filters with a kernel length

of 3 are used [2][3]. The output of this layer will be a vector

of size 256. This vector will further be passed to a dense layer

where each neuron has 256 weights and a “ReLU” activation

function. The final layer is a dense layer with the activation

function ‘sigmoid’. This layer determines whether a given

comment is expletive or not.

3.3.3. Trained CNN Model Hyperparameter Analysis

Fig. 1 Parameters of CNN network

Fig. 2 CNN kernel sliding over text

Shivam Tomar / IJCTT, 72(12), 164-170, 2024

167

Fig. 3 Working of CNN in text classification

3.4. LSTM

 LSTMs are a kind of RNN that maintains a state for each

layer in the recurrent network. They overcome a challenging

problem in the RNNs i.e. Vanishing/Exploding gradient. The

modern version of LSTM typically uses a special neural

network unit called a “Gated recurrent unit (GRU)”. LSTMs

contain memory for each layer, which is governed by a trained

neural network. These neural networks can be trained to learn

what to remember.

Memory can be used to learn dependencies between

tokens that stretch across the entirety of data samples, such as

sentences or documents. An LSTM cell contains 3 gates and a

memory unit. The gates in LSTM cells contain neurons inside

them. The gates in the LSTM network are:

3.4.1. Forget Gate

The forget gate determines how much cellular memory

you want to erase. The forget gate contains a feed-forward

neural network that outputs a vector of values between 0 and

1 using a sigmoid activation function. Forget gate output is

further used to modify the values of the memory vector.

3.4.2. Candidate Gate

This gate has 2 neurons and performs the following: 1).

Decided which input vector element needs to be remembered

2). Route the remember input element to the right memory.

3). Output gate: The output of the LSTM cell is formed with

the help of memory.

3.4.3. LSTM Model Hyperparameters

- Epochs: 4

- Batch size: 128

- Word embedding vector dimension: 64

- Number of unique words: 10000

- Max review length: 100

- pad type = trunc type = ‘pre’

- drop embedding = 0.2

- number of LSTM cells = 256

- Dropout LSTM layer = 0.2

- Size of dense layer = 256

- Dropout dense layer = 0.2

Shivam Tomar / IJCTT, 72(12), 164-170, 2024

168

3.4.4. Trained LSTM model Hyperparameter Analysis

Fig. 4 Parameters of the LSTM network

Fig. 5 Working of LSTM network

Fig. 6 Sequence diagram of Client Server communication

Output

from 1-1

Concatenated

input

Input

at t

Memory

Forget gate
Candidate gate

 (2 elements)
Output gate Output to 1+1

Open app

Send data for
prediction

in JSON format:

{"comments"
:[{String array}]}

Return prediction
result

in JSON format:

{"results":
[{Boolean array}]}

User MobileApp AWSAPI EC2Instance
FastAPI

 (ML model)

User MobileApp AWSAPI EC2Instance MLModel

Forward data

Forward prediction

Process data

Return prediction

Display prediction

Shivam Tomar / IJCTT, 72(12), 164-170, 2024

169

4. Deployment
4.1. Deploy model to AWS EC2 instance

 For integrating the model’s functionality into mobile

apps, the model is deployed on an AWS EC2 instance [6].

Python’s Fast API framework is used to expose a POST

endpoint “/predict” that accepts a JSON payload with key

“comments”. Value for the key comments is a String array

containing comments that the mobile app wants to classify

as either expletive or non-expletive.

The response from the POST /predict API is a Boolean

array where any Boolean values depict whether the String

in the input at the corresponding index as a Boolean value

is an expletive comment or not.

4.2. Mobile App Setup

Mobile apps will use the endpoint POST /predict to

classify user comments as expletive or not. The mobile app

will send the array of user comments to the POST API for

classification. As a response, the mobile app will receive an

array of Boolean values where true indicates that the

corresponding comment is expletive. These Boolean values

can be used to hide the expletive comments.

 Fig. 7 Mobile app UI

5. Validation and Results
 The performance of both models is measured on the

validation data using the ROC AUC (Area under the

receiver operating characteristic curve) metric. The

following scores were found for the models:
Table 3. ROC-AUC scores for CNN and LSTM classification models

Model ROC-AUC%

CNN 95.9

LSTM 93

 The performance of the CNN model is better than that

of the LSTM model on validation data in the experiment,

even though LSTM is a more powerful algorithm for

Natural Language Processing models. This is due to the

superior ability to link context between tokens in large

sentences and document text.

Further analysis suggests that the CNN model

overperformed the LSTM model on validation data because

of the small amount of data used for training the models. If

the models are trained on a large amount of data, the LSTM

model would outperform the CNN model.

6. Discussion
In this research, CNN and LSTM DL models were

compared for expletive language classification. This

research used a small data set to train these models. CNN

model outperforms the LSTM model on validation data

using the ROC AUC score. The LSTM model will perform

better than the CNN model if trained on a larger dataset

since LSTM has a better ability to remember context.

There are better DL algorithms that can be used to

improve the performance even more, like Transformers,

which can handle multilingual comments for expletive

language classification, unlike CNN or LSTM models.

The dataset has biases that negatively impact the

performance of models. Creating a bias-free dataset can

improve the trained model’s performance. Mobile apps of

eCommerce companies are used all over the world and

support multiple locales. Training models in multiple

languages can increase the usefulness of the model.

7. Conclusion

It was found that the ROC-AUC score was better for

the CNN-trained model compared to the LSTM model. It is

also concluded that if we had increased the training data,

then the LSTM model would have outperformed the CNN

model. This is because the LSTM model is capable of

remembering the context throughout large text samples and

documents. CNN model is only capable of remembering

context among nearby tokens.

Shivam Tomar / IJCTT, 72(12), 164-170, 2024

170

References
[1] Jon Krohn, Deep Learning for Natural Language Processing, 2nd ed., Pearson, 2020. [Publisher Link]

[2] Metrics For Evaluating Machine Learning Classification Models, Medium, Towards Data Science, 2024. [Online]. Available:

https://towardsdatascience.com/metrics-for-evaluating-machine-learning-classification-models-python-example-59b905e079a5

[3] Long Short-Term Memory, Wikipedia, 2024. [Online]. Available: https://en.wikipedia.org/wiki/Long_short-term_memory

[4] Convolutional Neural Network, Wikipedia, 2025. [Online]. Available: https://en.wikipedia.org/wiki/Convolutional_neural_network

[5] Tomas Mikolov et al., “Efficient Estimation of Word Representations in Vector Space,” Arxiv Preprint, pp. 1-12, 2013. [CrossRef]

[Google Scholar] [Publisher Link]

[6] Mourad Mars, “From Word Embeddings to Pre-Trained Language Models: A State-of-the-Art Walkthrough,” Applied Sciences, vol. 12,

no. 17, pp. 1-19, 2022. [CrossRef] [Google Scholar] [Publisher Link]

https://www.oreilly.com/library/view/deep-learning-for/9780136620013/
%5b1%5dhttps:/en.wikipedia.org/wiki/Long_short-term_memory
https://en.wikipedia.org/wiki/Convolutional_neural_network
https://doi.org/10.48550/arXiv.1301.3781
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Efficient+estimation+of+word+representations+in+vector+space&btnG=
https://arxiv.org/abs/1301.3781
https://doi.org/10.3390/app12178805
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=From+word+embeddings+to+pre-trained+language+models%3A+A+state-of-the-art+walkthrough.&btnG=
https://www.mdpi.com/2076-3417/12/17/8805

